Estimation of formation strength index of aquifer from neural networks
نویسندگان
چکیده
The purpose of this study is to construct a model that predicts an aquifer’s formation strength index (the ratio of shear modulus and bulk compressibility, G/Cb) from geophysical well logs by using a backpropagation neural network (BPNN). The BPNN model of an aquifer’s formation strength index is developed using a set of well logging data. The model is a [4-5-1] three-layer BPNN with a four-neuron input layer (depth, gamma-ray log data, formation density log data, and sonic log data, respectively), a five-neuron hidden layer, and a one-neuron output layer (formation strength index). The optimal learning rate and momentum constant used in the BPNN model are obtained from serial combinative experiments. The inside test and outside test are implemented to check the performance of network learning and the prediction ability of the network, respectively. The results of the inside test, based on 84 training data sets from a total of 105 data sets, show that the network has beenwell-trained because the mean square error between the network output value and the target value from the inside test is very small (1.1 10 ). The results of the outside test, based on 21 testing data sets from 105 data sets, show the excellent prediction ability of the BPNN model, because the network prediction values closely track with the target values (the mean square error is 2.1 10 ). & 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
Permeability estimation from the joint use of stoneley wave velocity and support vector machine neural networks: a case study of the Cheshmeh Khush Field, South Iran
Accurate permeability estimation has always been a concern in determining flow units, assigning appropriate capillary pressure andrelative permeability curves to reservoir rock types, geological modeling, and dynamic simulation.Acoustic method can be used as analternative and effective tool for permeability determination. In this study, a four-step approach is proposed for permeability estimati...
متن کاملEstimation of groundwater level using a hybrid genetic algorithm-neural network
In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...
متن کاملEstimation of groundwater level using a hybrid genetic algorithm-neural network
In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...
متن کاملEstimation of coal swelling index based on chemical properties of coal using artificial neural networks
Free swelling index (FSI) is an important parameter for cokeability and combustion of coals. In this research, the effects of chemical properties of coals on the coal free swelling index were studied by artificial neural network methods. The artificial neural networks (ANNs) method was used for 200 datasets to estimate the free swelling index value. In this investigation, ten input parameters ...
متن کاملUse of artificial neural networks to estimate installation damage of nonwoven geotextiles
This paper presents a feed forward back-propagation neural network model to predict the retained tensile strength and design chart in order to estimation of the strength reduction factors of nonwoven geotextiles due to installation process. A database of 34 full-scale field tests were utilized to train, validate and test the developed neural network and regression model. The results show that t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Geosciences
دوره 35 شماره
صفحات -
تاریخ انتشار 2009